//= vietedu::getAssetVersion()?>
Học về hàm số mũ không thể bỏ qua điều kiện hàm số mũ - phần kiến thức nhỏ nhưng rất quan trọng, quyết định đúng sai của bài toán. Trong bài viết này, VUIHOC sẽ hướng dẫn các em từng bước giải điều kiện xác định của hàm số mũ siêu nhanh và siêu chính xác nhé!
Phương pháp đạo hàm logarit bằng máy tính là chủ đề các em học sinh cấp 3 quan tâm nhiều nhất. Trong bài viết này, VUIHOC sẽ cùng các em ôn lại lý thuyết đạo hàm logarit và hướng dẫn các em cách xử lý bài đạo hàm logarit bằng máy tính cực nhanh.
Khi giải các bài tập về hàm logarit, điều kiện hàm logarit là bước đầu tiên các em cần phải xử lý. Vì thế, VUIHOC đã tổng hợp lý thuyết và phương pháp giải nhanh và chính xác điều kiện hàm logarit ở bài viết sau đây.
Khi học phần đạo hàm logarit, các em sẽ gặp một dạng đạo hàm đó là đạo làm log x. Vậy đạo hàm log x là gì? Công thức ra sao và cách giải các bài tập thế nào? Cùng VUIHOC ôn tập trong bài viết dưới đây nhé!
Nói đến hàm số mũ và logarit, chúng ta không thể bỏ qua dạng bài tập đạo hàm mũ và logarit cơ bản. Đây là phần kiến thức cực quan trọng xuyên suốt chương trình học Cấp 3, đặc biệt là lớp 12 ôn thi đại học. Ở bài viết này, các em sẽ cùng VUIHOC điểm lại đầy đủ lý thuyết và cùng giải bài tập đạo hàm của hàm số mũ và logarit.
Để tổng hợp toàn bộ công thức hàm logarit trong chương trình học THPT quả thực tốn rất nhiều thời gian và công sức. Hiểu được nỗi lòng của các em học sinh, các thầy cô VUIHOC đã dày công chọn lọc và tổng hợp full bộ công thức hàm log cho các em dễ dàng ghi nhớ và ôn tập hơn. Cùng đọc bài viết dưới đây nhé!
Đạo hàm hàm số mũ có công thức ra sao? Ứng dụng của đạo hàm hàm số mũ vào các bài tập như thế nào? Có mười vạn thắc mắc của các em học sinh THPT gửi đến VUIHOC hỏi về khối kiến thức này. Hôm nay, cùng VUIHOC tìm hiểu đạo hàm hàm số mũ từ A đến Z nhé!
Để giải tốt bài tập đạo hàm logarit này, các em cần nắm vững từ lý thuyết, công thức tính đạo hàm logarit, các tính chất đến những dạng bài tập thường gặp. Cùng VUIHOC ôn tập từ A đến Z về đạo hàm hàm số logarit nhé!